

Center for Public Utilities - Current Issues Forum
August 2021

Uncommon Dialogue: U.S. Hydropower: Climate Solution and Conservation Challenge

- What: Historic effort to find common ground between hydro industry, river community and environmental organizations.
- Who: 9 NHA member organizations: American Rivers, Hydropower Reform Coalition, LIHI, and other river groups and Union of Concerned Scientists, World Wildlife Fund, and other environmental groups
- Why: Common motivation: address the urgent challenge of climate change and its impacts on rivers.
 - ✓ Joint Statement in Oct 2020
 - ✓ Plan to work together in 7 areas
 - ✓ Joint Congressional request

Los Angeles Times

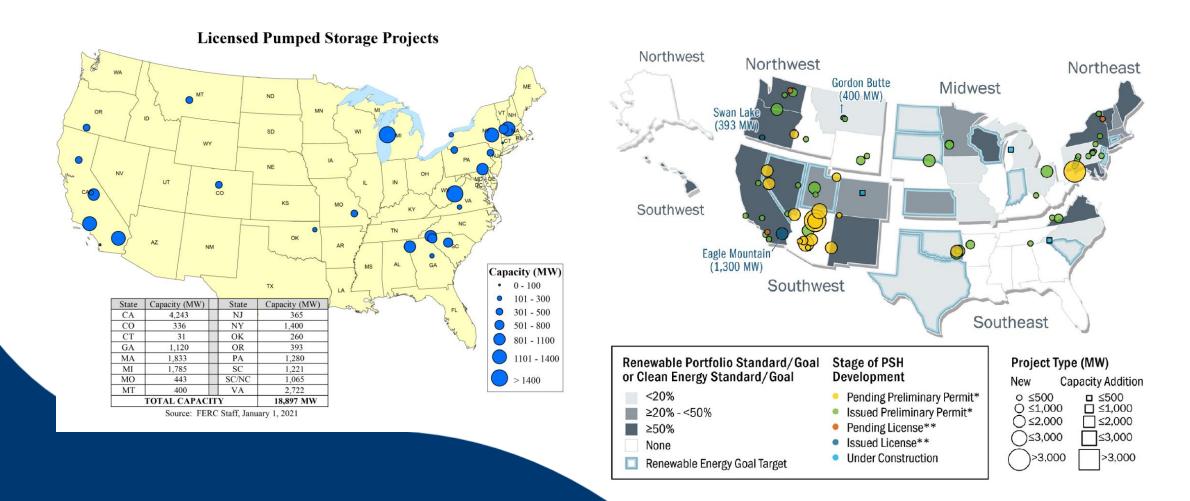
Newsletter: Can hydropower help solve the climate crisis? This \$63-billion plan is banking on it

Current Hydro and PSH fleet

FIGURE 3: RESOURCE CAPABILITIES TO PROVIDE VARIOUS GRID SERVICES

- 102GWS (80 hydro, 22 PSH)
- 41% of renewable gen;
- 92% of bulk storage;
- 40% of blackstart;
- largest source of clean flexibility
- Can provide almost all grid services

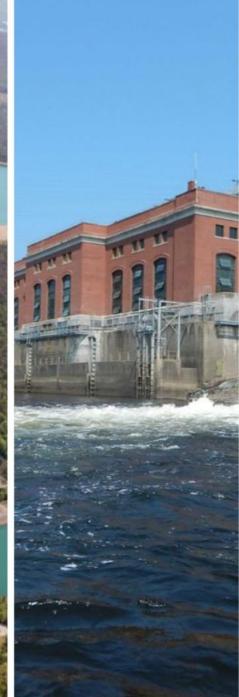
<u>Product</u>	Nuclear	Run-of-River Hydro	Pondage Hydro	Pumped Storage	Coal	Combined Cycle	Combustion Turbine	Wind	Solar	Battery Storage	Demand Response	Energy Efficiency
Day-Ahead Energy	✓	√	✓	✓	√	✓	0	✓	✓	0	0	0
Real-Time Energy	0	√	✓	✓	√	✓	0	✓	✓	0	0	0
Clean Energy	>	√	/	0	Х	0	0	✓	>	0	0	✓
Regulation	X	0	\	\	√	>	0	0	0	>	0	X
Spinning Reserves	X	0	✓	✓	√	>	✓	X	X	>	0	X
Non-Spinning Reserves	X	Х	>	\	Х	>	\	X	X	>	0	X
Load-following	0	0	✓	✓	0	>	✓	0	0	>	0	X
Reactive Power	>	√	\	>	√	>	✓	0	0	>	X	X
Black Start	X	√	✓	✓	0	✓	✓	X	X	0	X	X
Resource Adequacy	✓	✓	✓	✓	√	>	✓	0	0	0	>	✓

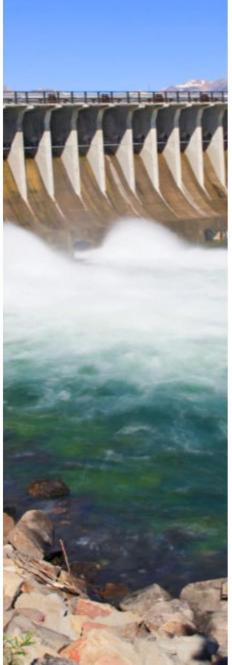

Technical Capability to Provide Product

✓ Well-Suited

O Neutral


X Poorly-Suited


Existing PSH fleet and project pipeline


Pumped Storage (PSH) value: Enabler of the transition

- Long duration peaking capacity
- Critical balancing services (ramping, operating reserves, regulation)
- Energy arbitrage
- Blackstart
- System support services (inertia, voltage control)
- Other values
 - ✓ Reduced curtailments
 - ✓ Lowers system costs
 - ✓ Reduces overall emissions

PSH Challenges

- Cost/development timelines
- More starts/stops; daytime pumping
- Used out of market to shore up reliability
- Arbitrage model being replaced with grid services?
- Models don't always reflect true PSH value/capability
- Undervalued services

Policy changes to fully value PSH

- Congress ITC for ALL storage resources
- State regulators ensure PSH is modeled correctly in IRPs
- State legislators Send long-term signals for long duration storage
- RTOs/FERC Fully value flexibility/reliability services
- FERC Streamline licensing process for off-river projects

Questions

Contact: Cameron@hydro.org